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Prediction of seizure likelihood with a long-term, implanted 
seizure advisory system in patients with drug-resistant 
epilepsy: a fi rst-in-man study 
Mark J Cook, Terence J O’Brien, Samuel F Berkovic, Michael Murphy, Andrew Morokoff , Gavin Fabinyi, Wendyl D’Souza, Raju Yerra, John Archer, 
Lucas Litewka, Sean Hosking, Paul Lightfoot, Vanessa Ruedebusch, W Douglas Sheffi  eld, David Snyder, Kent Leyde, David Himes 

Summary
Background Seizure prediction would be clinically useful in patients with epilepsy and could improve safety, increase 
independence, and allow acute treatment. We did a multicentre clinical feasibility study to assess the safety and 
effi  cacy of a long-term implanted seizure advisory system designed to predict seizure likelihood and quantify seizures 
in adults with drug-resistant focal seizures. 

Methods We enrolled patients at three centres in Melbourne, Australia, between March 24, 2010, and June 21, 2011. 
Eligible patients had between two and 12 disabling partial-onset seizures per month, a lateralised epileptogenic zone, 
and no history of psychogenic seizures. After devices were surgically implanted, patients entered a data collection 
phase, during which an algorithm for identifi cation of periods of high, moderate, and low seizure likelihood was 
established. If the algorithm met performance criteria (ie, sensitivity of high-likelihood warnings greater than 65% 
and performance better than expected through chance prediction of randomly occurring events), patients then 
entered an advisory phase and received information about seizure likelihood. The primary endpoint was the number 
of device-related adverse events at 4 months after implantation. Our secondary endpoints were algorithm performance 
at the end of the data collection phase, clinical eff ectiveness (measures of anxiety, depression, seizure severity, and 
quality of life) 4 months after iniation of the advisory phase, and longer-term adverse events. This trial is registered 
with ClinicalTrials.gov, number NCT01043406.

Findings We implanted 15 patients with the advisory system. 11 device-related adverse events were noted within four 
months of implantation, two of which were serious (device migration, seroma); an additional two serious adverse 
events occurred during the fi rst year after implantation (device-related infection, device site reaction), but were 
resolved without further complication. The device met enabling criteria in 11 patients upon completion of the data 
collection phase, with high likelihood performance estimate sensitivities ranging from 65% to 100%. Three patients’ 
algorithms did not meet performance criteria and one patient required device removal because of an adverse event 
before suffi  cient training data were acquired. We detected no signifi cant changes in clinical eff ectiveness measures 
between baseline and 4 months after implantation. 

Interpretation This study showed that intracranial electroencephalographic monitoring is feasible in ambulatory patients 
with drug-resistant epilepsy. If these fi ndings are replicated in larger, longer studies, accurate defi nition of preictal 
electrical activity might improve understanding of seizure generation and eventually lead to new management strategies.

Funding NeuroVista. 

Introduction
Epilepsy is a common and serious group of neurological 
disorders that is characterised by recurrent seizures 
and aff ects more than 60 million people worldwide. 
30–40% of cases are not adequately controlled with 
current treatments.1 Resective surgery, though often 
eff ective, is either not appropriate or not available for 
most patients with inadequately controlled epilepsy. 
Although the morbidity and mortality associated with 
epilepsy is largely related to the immediate eff ects of 
loss of consciousness, such as falls and injury, and the 
life-threatening risk of status epilepticus, the inherent 
unpredictability of seizures contributes substantially to 
the risk of injury, mortality, and psychosocial disability. 
Quality-of-life impairments associated with epilepsy 

compare unfavourably with those associated with 
many other chronic illnesses, such as hypertension, 
diabetes, and heart disease,2 and the uncertainty of 
seizure occurrence is a major component of this 
impairment.3

Although the occurrence of seizures is deemed 
unpredictable, evidence shows that changes occur in the 
brain before attacks. This evidence is provided by 
anecdotal reports of prodromes, which have been 
described by patients or noted by caregivers and feature 
subtle changes in behaviour, in the hours or sometimes 
days before a seizure occurs. Additionally, functional MRI 
studies4–6 and near-infrared spectroscopy7,8 have shown 
that perfusion increases before seizures. Transcranial 
magnetic stimulation experiments have shown that the 
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brain is in a hyperexcitable state before seizures.9,10 Other 
techniques, including auditory and visual steady-state 
responses11 and direct electrical stimulation12 of the brain, 
suggest that cortical hyper excitability is a precursor to 
epileptic seizures. These fi ndings suggest that seizures 
might be anticipated by careful observation of the brain. 
Reliable anticipation of seizure occurrence could allow 
patients to avoid dangerous situations and enable 
administration of treatments, such as electrical 
stimulation or acute drug delivery, targeted to when a 
seizure is likely to occur, rather than chronic 
administration, which is current clinical practice. 

The seizure advisory system is a hand-held device that 
receives and analyses electroencephalography (EEG) 
signals recorded directly from the surface of the brain, 
and then provides a visual and audible signal showing 
the likelihood of a seizure in the minutes or hours ahead. 
Here we report the results of the fi rst study to assess the 
safety and effi  cacy of the seizure advisory system in 
patients with drug-resistant epilepsy. 

Methods
Study design and participants
Before our study, NeuroVista (Seattle, WA, USA) 
assembled a large database of scalp and intracranial 

electroencephalograms (EEGs) recorded during assess-
ments of epilepsy-monitoring units at several academic 
centres. A development and validation test library of 
intracranial subdural grid EEG recordings from 49 patients 
(total duration 7192 h) was derived from these data.

A purpose-built cluster-computing environment was 
developed to assist in the search for a suitable algorithm 
on the basis of previously developed methods.13 The 
resulting prototype algorithm showed good performance. 
However, this early work had several limitations. Even 
with the application of the development and validation 
test library, conservative analysis methods often made 
meaningful diff erences between algorithm variants 
diffi  cult to show. A major limitation was the possibility of 
errors that arise from multiple comparisons and 
overinterpretation of the data, the eff ects of drug changes, 
and the changes that can result during the surgical 
recovery period. Steps were taken to avoid errors arising 
from multiple comparisons and overinterpretation of the 
data, and we did experiments to examine the eff ects of 
variation in the data that might arise from tapering of 
drugs or recovery after surgery. Previously, the seizure 
advisory system was deployed in dogs.14

We designed a feasibility study to provide safety and 
proof-of-concept effi  cacy data for the seizure advisory 
system in patients with medically refractory epilepsy. The 
study was done at three clinical centres in Australia—
Austin Health, the Royal Melbourne Hospital, and St 
Vincent’s Hospital, all of which are part of the Melbourne 
University Epilepsy Group. The human research ethics 
committees of the participating institutes approved the 
study and subsequent amendments. All patients gave 
written informed consent before participation. 

We recruited patients within our practices between 
March 24, 2010, and June 21, 2011. Enrolment dates were 
broadly defi ned prospectively to provide reasonable 
enrolment windows. We decided to conclude the study 
early on Oct 19, 2012, because of uncertainties about 
whether funding for the study would continue, to ensure 
optimum management of patients. Patients were 
selected mainly on the basis of suitable seizure frequency 
(between 2 and 12 seizures per month); patients were 
adults who had a level of independence suffi  cient to 
make the device useful in the management of daily 
activities. Complete lists of inclusion and exclusion 
criteria are in the appendix. Patients reported baseline 
seizure rates for the 3 months before enrolment. Patients 
meeting the inclusion criteria were implanted with the 
seizure advisory system and initially entered a data 
collection phase, during which intracranial EEGs were 
recorded but the hand-held device gave no advisories to 
the patients. When suffi  cient data were gathered, a 
patient-specifi c algorithm was created and then assessed 
against performance criteria. If the algorithm met these 
performance criteria, the patient entered the advisory 
phase, during which the device was enabled to provide 
visual and audible advisories. 

 Figure 1: Major components of seizure advisory system
Intracranial electrode arrays (location shown by grey areas) were used to collect intracranial electroencephalogram 
(EEG) data on the cortical surface. Leads were connected to a subclavicularly placed implanted telemetry unit, 
which wirelessly transmitted data to an external, hand-held personal advisory device. The external device received 
the telemetered EEG, applied an algorithm to the data, and displayed the resultant information as a series of 
advisory lights—blue (low), white (moderate), or red (high) indicators—in addition to an audible tone or vibration, 
or both. The hand-held device could be worn on the belt or carried in a bag. 
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Procedures
Our primary endpoint was the number of device-related 
adverse events at 4 months after implantation. We 
standardised the defi nition of such events with the 
Medical Dictionary for Regulatory Activities. Our 
secondary endpoints were algorithm performance at the 
end of the data collection phase, clinical eff ectiveness 
4 months after initiation of the advisory phase, and 
adverse events and clinical eff ectiveness 12 and 
24 months after implantation.

The major components of the seizure advisory system 
are shown in fi gure 1. A cluster-computing system at 
NeuroVista was used to confi gure algorithms for each 
patient (appendix). Two silicon implantable lead 
assemblies, each with eight platinum iridium contacts 
distributed across two electrode arrays, collected 
intracranial EEGs on the cortical surface. The lead 
assemblies were designed with materials and geometries 
similar to those of commercially available cortical strip 
electrodes that are routinely used in epilepsy-monitoring 
units, but have increased robustness and tolerance to 
fl exural stresses. 

The leads were tunnelled down the neck and terminated 
at a subclavicularly placed, titanium-encased, her-
metically sealed, implantable telemetry unit, which 
sampled 16 channels of intracranial EEGs acquired at 
400 Hz and wirelessly transmitted these data to an 
external, hand-held personal advisory device. The leads 
did not deliver any type of electrical energy or stimulation 
to the patient. The implantable telemetry unit was 
inductively recharged through an external charging 
accessory. The implantable portions of the system were 
designed for long-term implantation but could be 
removed with standard surgical techniques. 

After collection of demographic data and medical 
histories, and clinical assessments at baseline, the 
advisory systems were surgically implanted. Leads were 
placed via a small craniotomy regionally and unilaterally 
over the quadrant believed to contain the epileptogenic 
zone (as determined by previous EEG, imaging studies, 
or seizure type; appendix). In patients with bilateral 
temporal lobe onset seizures, leads were placed over the 
hemisphere that generated the most frequent, 
stereotypical seizures. We verifi ed system operation and 
integrity before wound closure. 

After patients recovered from surgery, the data 
collection phase began. We did postoperative exami n-
ations before discharge and 6 weeks after surgery, and 
neurological examinations and cognitive assessments at 
baseline and 4 months, 1 year, and 2 years after surgery. 
The cognitive battery designed to detect any decline in 
cognitive function included the Wechsler abbreviated 
scale of intelligence (vocabulary and matrices subtests), 
Rey auditory verbal learning test (forms AB and CD), 
brief visuospatial memory test–revised (forms 1–4), trail 
making test (A and B), Wechsler memory scale–working 
memory index (spatial span, letter-number sequencing), 
Wechsler adult intelligence scale (3 digit symbol and 
symbol search), Boston naming test, judgment of line 
orientation test, and grooved pegboard test. 

At least one month of EEGs containing at least fi ve 
leading seizures had to be recorded during the data 
collection phase to develop an algorithm. For the purpose 
of this study, and for a conservative estimation of 
performance, we defi ned a lead seizure as a clinical 
seizure that is preceded by a minimum of 8 h of interictal 
data. Accumulated EEGs were annotated by NeuroVista 
clinical staff  and verifi ed by study investigators on the 

Age 
(years) 

Sex Age at diagnosis 
(years)

Antiepileptic drugs Epileptogenic zone Previous 
resection

Patient 1 26 Male 4 Clonazepam, levetiracetam, lamotrigine, valproate Parietal-temporal No

Patient 2 44 Male 12 Lacosamide, lamotrigine, oxcarbazepine, valproate Occipitoparietal No

Patient 3 22 Female 16 Carbamazepine, lamotrigine, phenytoin Parietal-temporal Yes

Patient 4 61 Male 48 Carbamazepine, lacosamide, lamotrigine, topiramate, 
phenytoin

Parietal-temporal No

Patient 5 20 Female 1 Clonazepam , lamotrigine, oxcarbazepine, topiramate Frontotemporal Yes

Patient 6 62 Male 37 None Temporal No

Patient 7 52 Male 26 Carbamazepine, clonazepam, levetiracetam Frontotemporal No

Patient 8* 48 Male 20 Carbamazepine, levetiracetam Frontotemporal Yes

Patient 9 51 Female 10 Carbamazepine Occipitoparietal No

Patient 10 50 Female 15 Levetiracetam, oxcarbazepine, zonisamide Frontotemporal Yes

Patient 11 53 Female 15 Lacosamide, phenytoin, perampanel Frontotemporal No

Patient 12 43 Male 20 Lamotrigine, lacosamide, phenytoin, retigabine Temporal No

Patient 13 50 Male 20 Carbamazepine, clonazepam, levitiracetam, lacosamide Temporal Yes

Patient 14 49 Female 4 Clonazepam, oxcarbazepine Parietal-temporal No

Patient 15 36 Male 5 Carbamazepine, lacosamide, perampanel, topiramate Temporal Yes

Drugs were used throughout the study, with variations according to clinical parameters (ie, toxic eff ects).*Patient 8 had previous vagus nerve stimulation. 

Table 1: Demographics of patients at baseline
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basis of patients’ diaries, hand-held audio recordings, and 
a seizure detection algorithm based on an unsupervised 
learning approach that identifi es signifi cant outliers in 
features of EEGs that are associated with seizures.15 Only 
electrographic events that were judged by a reviewer to be 
associated with clinical manifestations (seizure diary or 
audio recordings; ie, clinically correlated seizures) or 
those that were electrographically similar in onset, 
propagation, and spread to clinically correlated seizures 
(ie, clinical equivalent seizures) were used to train the 
algorithm. For the purpose of algorithm training, we 
assumed that similar electrographic presentations were 
of similar clinical relevance. We assessed stationarity of 
algorithm features generated from EEGs by noting the 
trajectory of the processed signal in the space defi ned by 
the algorithm feature vector. 

The personal advisory device received and processed 
the EEG data in real time on the basis of the patient’s 
unique algorithm. Outputs show the patient’s likelihood 

of having a seizure via a series of advisory lights—blue 
(low likelihood), white (moderate likelihood), or red 
(high likelihood) indicators—and an audible tone or 
vibration, or both. The personal advisory device stored 
EEGs and advisories on standard fl ash memory cards for 
subsequent analysis. It also supported audio recordings, 
both those manually triggered by the patient for diary 
purposes and those automatically activated when a 
seizure was detected by the system to help to establish a 
clinical correlate with intracranial EEG activity.

During the study, patients recorded seizures via diary 
or patient-initiated audio recordings on the hand-held 
device, or both. These records were supplemented by 
automatically activated audio recordings that were made 
when the device detected events, which allowed 
identifi cation of unreported clinical seizures, through 
sounds made by patients or the responses of bystanders.

We prospectively assessed algorithm performance 
4 months after initiation of the advisory phase. 
Additionally, when applicable, we assessed clinical 
eff ectiveness measures with the quality of life in epilepsy 
survey, Beck depression inventory, Beck anxiety 
inventory, multidimensional health locus of control 
scale, Liverpool seizure severity scale, and caregiver 
burden inventory at 4 months, and compared results 
with those at baseline. 

Statistical analysis
As an invasive fi rst-in-man study, a sample size of ten 
patients was originally established to assess risk and 
benefi t. After successful enrolment and implantation of 
the fi rst ten patients, we expanded the study to 15 patients.

In view of the varied and inconsistent defi nition of 
seizure, the gold standard for algorithm assessment 
included only clinically correlated seizures.16–18 

To begin the advisory phase, individualised algorithms 
had to meet two criteria—sensitivity of the red advisory 
indicator had to be superior to a time-matched chance 
indicator and not inferior to (ie, lower limit 95% CI of the 
proportion of seizures anticipated not lower than) 65% and 
the blue indicator had to have a false-negative rate that was 
superior to a time-matched chance indicator (signifi cance 
level of 0·05 for both criteria). Red indicators had to 
precede a seizure by 5 min to be deemed a true-positive, 
and a seizure could not occur within 5 min of a blue 
advisory to qualify as a true-negative. If only one criterion 
was satisfi ed, advisory indicators could be enabled 
independently to provide solely high or low likelihood 
advisories. We used a leave-one-out cross-validation to 
estimate performance.13 Patients, investigators, and other 
reviewers of EEGs (ie, NeuroVista personnel) were not 
privy to advisory indicators during the data collection 
phase. If neither criterion was met, the system was 
explanted and the patient discontinued the study.

We calculated sensitivity for the high likelihood 
advisory and the signifi cance of the advisory performance 
compared with a time-matched chance indicator. When a 

Adverse events Serious adverse events

4 months after 
implantation 

12 months after 
implantation

4 months after 
implantation

12 months after 
implantation

Device migration 1 ·· 1 ··

Device-related infection ·· 1 ·· 1

Reaction at site of medical device 1 1 ·· 1

Postoperative nausea 1 ·· ·· ··

Postoperative vomiting 1 ·· ·· ··

Procedural headache 5 ·· ·· ··

Procedural pain 1 ·· ·· ··

Seroma 1 ·· 1 ··

Adverse events total includes serious adverse events. For the primary endpoint, we followed up adverse events for 
4 months after implantation of the device (12 months for secondary endpoints). No further device-related adverse 
events were noted before study termination; fi ve of the 12 remaining (when the study was terminated) implanted 
patients reached the endpoint of 24 months after implantation.

Table 2: Device-related adverse events and serious adverse events

Figure 2: Box plots of time between start of the red advisory and seizures, by patient
Solid lines represent medians, top whiskers maxima, bottom whiskers minima, box tops 75th percentiles, box 
bottoms 25th percentiles, and circles outliers.
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high chance likelihood indicator is applied to the data 
with the same proportion of time in high advisory, the 
signifi cance value suggests the diff erence between 
chance prediction of events and actual sensitivity. We 
also calculated likelihood ratios to compare seizure rates 
between red and white advisories.

We did post-hoc analyses of individual patients’ and 
overall population seizure reporting. We tested 
correlation between reported and recorded events with 
Spearman’s rank correlation coeffi  cient against the null 
hypotheses, which assumed that zero correlation existed. 
We deemed a p of 0·05 or less to be signifi cant. We used 
R, JMP, Matlab, and purpose-built software for our 
analyses. This study is registered with ClinicalTrials.gov, 
number NCT01043406.

Role of the funding source
  The sponsor had roles in study design; data collection, 
analysis, and interpretation; and writing of the Article. 
VR, WDS, DS, KL, and DH were employed by the 
sponsor; no other authors received compensation. All 
authors had full access to all study data. The 
corresponding author made the decision to submit the 
paper for publication. 

Results
We enrolled 17 patients, two of whom dropped out before 
engaging in the study and are not included in further 
results. Nine men and six women (mean age 44·5 years 
[SD 13·0, range 20–62]) were implanted with the device. 
Six patients had undergone previous epilepsy resection, 
and one had used vagus nerve stimulation, which was 
explanted when the seizure advisory system was 
implanted (table 1). 

Clinical eff ectiveness data are not available for 
12 months after implantation because variability in 
duration of the data collection phase meant that 
assessments 12 months after implantation overlapped 
with assessments 4 months after advisory enablement in 
many patients. Because the study was concluded early, 
data were not gathered from most patients for 24 month 
endpoints.

Table 2 summarises device-related adverse events. At 
4 months after implantation, two of 11 events were 
serious and necessitated intervention. In patient 5, 
during the data collection phase, the implantable 
telemetry unit fastening sutures were compromised and 
the device migrated (potentially aggravated by a fall 
during a seizure), causing substantial discomfort. The 

Data collection phase (cross-validation estimate) Advisory phase (prospective performance at 4 months)

Time in 
advisory (%)

High likelihood performance Time in 
advisory (%)

High likelihood performance

High Low Seizures 
(n)

Sensitivity 
(%)

p Phase duration 
(days)

High Low Seizures 
(n)

Sensitivity p Likelihood 
ratio

Patient 1 33 27 8 (16) 75% 0·0142
(0·0004)

95·8 27 7 7 (13) 86% (77%) 0·0017
(0·0002)

14·3 
(8·0)

Patient 2 21 58 4 75% 0·0278 169·0 31 56 3 100% 0·0266 All*

Patient 3 42 Not 
enabled

37 (45) 65% (64%) 0·0026
(0·0013)

114·1 29 Not 
enabled

58 (106) 56% (45%) <0·0001
(0·0001)

3·1 (2·1)

Patient 4† 15 46 8 (9) 71% (75%) 0·0009
(0·0002)

183·8 ·· ·· ·· ·· ·· ··

Patient 8 40 Not 
enabled

29 (65) 69% (63%) 0·0010
(0·0001)

143·0 28 Not 
enabled

36 (86) 63% (62%) 0·0003
(<0·0001)

4·4 (4·2)

Patient 9 36 19 15 (17) 67% (59%) 0·0120 
(0·0401)

153·9 11 48‡ 49 (52) 18%§ (17%) 0·0839 
(0·1419)

0·8

Patient 10 31 Not 
enabled

14 (20) 71% (75%) 0·0013
(<0·0001)

142·7 17 Not 
enabled

109 (164) 54% (51%) <0·0001 5·8 (5·1)

Patient 11 30 20 20 (74) 93% (65%) <0·0001 90·7 15 26 11 (39) 56% (39%) 0·0039
(0·0003)

5·1 (2·6)

Patient 13 35 Not 
enabled

17 (44) 73% (62%) 0·0021
(0·0004)

149·9 28 Not 
enabled

26 (113) 57% (50%) 0·0021
(<0·0001)

3·4 (5·1)

Patient 14 5 83 5 (6) 100% <0·0001 467·9 3 88 3 100% <0·0001 All*

Patient 15 18 Not 
enabled

5 (6) 100% 0·0002
(<0·0001)

157·5 41 Not 
enabled

21 (24) 71% 0·0034
(0·0019)

3·6 (3·5)

Performance data were assessed on the basis of correlated clinical seizures. Patients 5, 6, 7, and 12 did not proceed to the advisory phase, either because an adverse event led 
to device removal despite satisfactory preliminary data acquisition (patient 5), or because the algorithm generated on completion of the data collection phase did not meet 
the predetermined performance criteria (patients 6, 7, and 12). Assessments based on the use of clinical equivalent seizures in addition to correlated clinical seizures are 
provided in parentheses, when diff erent. Likelihood ratio=([number of events in high advisory]/[time in high advisory])/([number of events in moderate advisory]/[time in 
moderate advisory]). *All events occurred during the high likelihood advisory. †Patient discontinued study because of adverse events before the 4 month advisory endpoint. 
‡Negative predictive value <100%; all other low likelihood advisories had a negative predictive value of 100%. §Performance criteria were not satisfi ed prospectively.

Table 3: Algorithm performance, by patient
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patient underwent a procedure to relocate and anchor the 
unit, and recovery was otherwise uncomplicated. Patient 
13 had persistent headaches immediately after 
implantation and imaging showed fl uid accumulation on 
the dura around the surgical wound. The patient had a 
second procedure to drain serous fl uid from the site and 
then recovered uneventfully. 

We noted two further serious adverse events at 
12 months after implantation. Patient 4 presented with 
symptoms of infection 7 months after implantation. The 
infection site near the implantable telemetry unit was 
evacuated but incidental damage to the leads resulted in 
complete explantation during a subsequent procedure; 
the patient fully recovered. Patient 5 (who presented 
previously with device migration) experienced lead 
tautness, causing neck discomfort, which led her to 
request explantation. After the device was removed, a 
thick fi brotic capsule remained that was not resorbed 
(tethering), necessitating an additional cosmetic 
procedure (appendix). Minor problems reported by 
patients included prominence of the implantable 
telemetry unit and cosmetic aspects of device location 
(data not shown). 

Compared with baseline, we noted no clinically 
signifi cant neuropsychological changes in individual 
patients as measured by cognitive assessments 4 months 
after implantation (appendix). 

When viewed from the perspective of the space defi ned 
by the algorithm feature vector, the region occupied by 
the processed iEEG signal typically drifted with time. 
This drift was prevalent in the days after implantation, 
which often prevented successful   classifi cation of events 
by the algorithm. This transient period was recorded in 
six patients and lasted from weeks to months, and in 
some cases necessitated extension of the data collection 
phase to allow data to become adequately stationary. 14 of 
15 patients accrued the required EEGs during the data 
collection phase (the other patient discontinued because 
of tethering). 11 of these 14 patients had a trained 
algorithm that met enabling criteria for the high 
likelihood advisory and progressed to the advisory phase 
(which included enabling moderate-likelihood 
advisories). Eight patients’ prospective performance 
4 months after advisory enablement continued to satisfy 
criteria, and two patients had 100% sensitivity. Patient 4 
advanced to the advisory phase, but explantation of the 
device because of infection was necessary before 
4 months after implantation.

In addition to high-likelihood and moderate-likelihood 
advisories, low advisory (blue) was enabled in fi ve 
patients, who were prospectively assessed. During the 
fi rst four months of the advisory phase, four of these 
patients achieved 100% negative predictive value; the 
fi fth had a negative predictive value of 98%. 4 months 
after advisory enablement, mean warning time of the red 
advisory was 114 min (SD, 151, range 5–960; fi gure 2). We 
detected no signifi cant decline or improvement across 
the population in clinical eff ectiveness measures between 
baseline and 4 months after advisory enablement 
(appendix). 

Table 3 shows individual algorithm performance in the 
data collection phase and the fi rst 4 months of the 
advisory phase. Rather than specifi city, which would be 
subjectively based on an arbitrarily chosen prediction 
horizon, we reported the time in high and low advisories 
as a proportion of valid EEGs. The remaining time was 
spent in the moderate advisory (data not shown). In two 
patients, all seizures occurred in the high likelihood 
advisory (table 3); in other patients, the likelihood of an 
event occurring in high likelihood advisory compared 
with moderate likelihood advisory varied substantially 
(mean 5·1 [SD 4·0]; table 3). Figure 3 shows a 19 day 
advisory timeline for one patient who achieved 100% 
sensitivity during the advisory phase.

Table 4 shows results of comparisons of individual 
patients’ seizure reporting; fi gure 4 shows those of 
comparisons of the population’s seizure reporting. We 
noted little correlation between reported and recorded 
events, and only fi ve patients’ correlations were 
signifi cant. 

Figure 3: Excerpt from patient 2’s advisory timeline
Each horizontal row represents a day broken into 2 h periods. Within each line, pixel columns are 2·3 min in 
duration and are broken down vertically into 13·8 s pixels. During periods of uncertain likelihood, the algorithm 
could not provide advisories because of data loss. From top to bottom, left to right, warning times for seizures 
were 14·9 min, 6·3 min, and 29·7 min.
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Disparity between clinical events and reported events 
was substantial. Most patients underestimated the 
frequency of seizures (table 4). Reported and actual 
events varied unpredictably within patients from month 
to month (data not shown). 

Discussion
Our study is the fi rst to record long-term EEGs in an 
ambulatory setting in human beings and to show 
successful prospective seizure prediction. Implantation 
of the seizure advisory system was generally well 
tolerated, and the device met expectations about data 
acquisition and analysis, although improvements in the 
transmission quality from the implantable telemetry unit 
would be benefi cial (panel).

Our study had some limitations. Patients had 
heterogeneous focal epilepsies, and all had longstanding 
refractory epilepsy. Several patients had undergone 
previous surgical procedures, and this population might 
not be representative of the broader group of patients 
with epilepsy. The stability of the features detected by the 
algorithm with increasing time is not yet clear. However, 
three patients have now had the device for more than 
2 years and, notwithstanding algorithm retraining, 
prediction ability remains stable with time. Conceivably, 
some long-term EEG changes could confound the 
process, but such changes seem unlikely in view of the 
stability of recordings.

We did not expect the transient eff ects of surgery, 
which varied in length from weeks to months, on 
features of EEGs that temporally change. This fi nding 
might be pertinent to much seizure prediction research, 
which has been based mainly on data from epilepsy-
monitoring units. 

Although we did not develop a formal method to 
identify sleep or vigilance, two patients seemed to have 
advisories that were diurnal (appendix), which might 
be because of susceptibility of the algorithm feature 
selection (ie, identifi cation of the metrics used to 
analyse the iEEG data [specifi cally for a preictal signal] 
that are most able to provide likelihood advisories) to 
the eff ects of sleep cycles. Future algorithms might 
benefi t from development of features insensitive to 
sleep patterns and use of corrected assessments that 
account for performance achieved mainly through 
diurnal selection. 

Algorithm selection and training were rigorously fi xed 
(ie, cluster-computing architecture for algorithm 
development was locked) throughout both the data 
collection phase and the fi rst 4 months of the advisory 
phase. The grouping of clinically correlated and clinical 
equivalent seizures provided more relevant training data 
for the prediction algorithm but reduced the probability 
of training for subclinical events (ie, events without 
clinically relevant manifestations).

Beyond 4 months in the advisory phase, we used 
various strategies for algorithm implementation, 

improvement, and training, making overall comparison 
diffi  cult, and thus we have not reported results for 
algorithm performance in this period. Algorithm 
performance was generally maintained until study 
termination, but periodic retraining (roughly every 
4 months) was sometimes necessary to either maintain 
or improve performance aff ected by feature temporal 

Figure 4: Monthly seizure rates—reported seizures versus clinical seizures 
captured by intracranial encephalography
Spearman’s rank correlation (�)=0·48 (p<0·0001).
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Estimated 
monthly 
seizure rate at 
enrolment

Mean monthly 
seizure rate 
during study

Mean monthly seizure 
rate captured by 
intracranial 
electroencephalography

Spearman’s 
rank 
correlation 
coeffi  cient (�)

p

Patient 1 4 5·37 14·17 0·71 0·0063

Patient 2 3 0·00 1·52 ·· ··

Patient 3 7 0·00 126·65 ·· ··

Patient 4 5 1·16 3·61 –0·26 0·5742

Patient 5 4 0·00 1·32 ·· ··

Patient 6 2 0·55 6·32 –0·40 0·2223

Patient 8 4 5·55 42·32 0·59 0·0356

Patient 9 10 22·52 30·37 0·74 0·0134

Patient 10 4 24·06 52·28 0·45 0·1472

Patient 11 8 11·21 102·50 0·25 0·4357

Patient 12 5 0·25 0·37 0·71 0·0097

Patient 13 7 0·99 25·74 0·86 0·0007

Patient 14 3 0·00 0·00 ·· ··

Patient 15 5 4·80 6·28 0·55 0·1328

We eliminated outliers 1·5 times or more outside the IQR, which resulted in zero values for some patients with 
infrequent seizures. 

Table 4: Seizure rates before and during the study, by patient
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drift. Use of non-time-dependent features might negate 
the need for retraining in future. A patient in whom we 
deemed treatment unsuccessful went on to have a 
successful algorithm after an extended data collection 
phase beyond the stipulation of the protocol. Modifi ed 
training strategies might eliminate the premature 
disqualifi cation of patients in whom extended training 
periods are needed to develop algorithms. 

The clinical usefulness of seizure prediction was 
inconclusive. Patients’ abilities to interpret and apply 
predictive data to gain clinical benefi t were anecdotally 
varied and unproven by quantitative metrics. Some 
patients had diffi  culty appreciating the importance of 
periods when the predicted likelihood of seizures was 
high, at least suffi  ciently so as to allow them to 
participate in daily activities. The high variability of 
seizure warning times also prevented a uniform 
response. Patients with the lowest proportions of time 
in the red advisory typically reported the highest 
satisfaction with the device and were able to make 
lifestyle adjustments, including avoiding swimming (ie, 
only swimming during low likelihood advisory), going 
to bed early, and warning bystanders. Awareness of 
device status did not cause heightened anxiety 
statistically or anecdotally.

Unexpectedly, the seizure advisory system provided 
insights into clinical management. Patient 7’s algorithm 
did not meet enabling criteria and thus the patient did not 
proceed to the advisory phase, but EEG recorded by the 
system located a previously unidentifi ed focal cortical 
dysplasia, which subsequently was successfully resected. 
Patient 12’s seizure reporting diff ered substantially from 
the pattern shown by recorded EEGs, and subsequent 
inpatient video-EEG showed that several events were 
psychogenic. In patient 3, who reported drowsiness and 
impaired cognitive function in the morning that were 
previously thought to be caused by drugs, monitoring 
showed that these eff ects were probably caused by the 
10–20 seizures she was having each night. Study 
investigators reviewed all seizure detection events to 
reduce the introduction of false-positive seizures during 
algorithm training and assessment.

Disparities in seizure frequency between patients’ pre-
enrolment estimates, seizure diaries during the study, 
and EEGs were often substantial. This relation varied 
highly from month to month, preventing the hypothetical 
application of a correction factor. Studies33–35 of monitored 
inpatients have shown that more seizures occur than 
patients are typically aware of, but anticipation of how 
this fi nding would translate to the ambulant setting 
has been diffi  cult. Our fi ndings have pronounced 
implications for trials of new epilepsy treatments, which 
often rely on patient-reported events as the primary 
effi  cacy endpoint.

Three patients, two of whose advisory systems had 
to be removed, had noteworthy procedure-related 
complications—a similar complication rate to that 
described for devices such as implantable deep brain 
stimulators for Parkinson’s disease (a meta-analysis36 has 
shown hardware-related and infection-related com-
plications in an estimated 17% of patients). Intracranial 
electrodes of the type used in our study have previously 
been used in long-term studies of epilepsy37 and were not 
reported to be associated with any specifi c complications. 
Although uncommon, the development of thick fi brotic 
capsules after device removal has been identifi ed in 
patients undergoing deep brain stimulation and is 
referred to as tethering.38

Our small proof-of-concept study shows that seizure 
prediction is possible and could lead to new therapeutic 
strategies and more independence for individuals with 
epilepsy.
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Panel: Research in context

Systematic review
 We searched PubMed, Google Scholar, and IEEExplore with the terms “seizure prediction” 
and “epilepsy prediction” for human and animal studies published between Jan 1, 1965, 
and Oct 28, 2012. We did not restrict publications by language. We also hand-searched 
the proceedings of seizure-prediction workshops. We assessed all studies that had 
attempted to prospectively examine seizure prediction. Early attempts at accurate seizure 
prediction were limited by restricted datasets and uncertainty about whether prediction 
was possible, even in principle. Although some studies19,20 had shown changes in the 
interictal period, suffi  cient sensitivity and specifi city to aff ord clinically useful information 
has not been reported. Previously reported algorithms have been based on various 
approaches, including spectral analysis, measures of entropy, correlation dimension, 
short-term Lyapunov exponents, and intracranial electroencephalography (EEG) 
synchronisation analysis.19–29 

Interpretation
Although previously reported algorithms have shown promise in some groups of patients 
in specifi c analytic conditions, the need to adopt rigorous methods that provide adequate 
protection from common analytic issues (eg, overtraining, in-sample testing) combined 
with an absence of suitable long-duration datasets has made satisfactory demonstration 
of performance diffi  cult.30–32 Our study is the fi rst done in human beings that recorded 
long-term intracranial EEG data in an ambulatory setting with the intention of 
establishing the feasibility of seizure prediction (rather than detection only). Device 
performance met expectations for data acquisition and analysis, and we showed that 
successful seizure prediction is possible in some patients. We also noted substantial 
disparities between reported and detected events, which could have pronounced eff ects 
on analysis of patient-reported data in epilepsy, with implications for management of 
patients. Our proof-of-concept study shows that seizure prediction is possible and 
provides an important fi rst step towards application of seizure-prediction techniques in 
development of new therapeutic strategies and perhaps eventually in clinical practice.
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